Advertisements
Advertisements
प्रश्न
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
उत्तर
x = 2cos4(t + 3), y = 3sin4(t + 3)
∴ `cos^4(t + 3) = x/(2), sin^4(t + 3) = y/(3)`
∴ `cos^2(t + 3) = sqrt((x)/(2)), sin^2(t + 3) = sqrt((y)/(3)`
∵ cos2(t + 3) + sin2(t + 3) = 1
∴ `sqrt((x)/(2)) + sqrt((y)/(3)` = 1
Differentiating x and y w.r.t. t, we get
`(1)/sqrt(2)"d"/"dx"(sqrt(x)) + (1)/sqrt(3)"d"/"dx"(sqrt(y))` = 0
∴ `(1)/sqrt(2) xx (1)/(2sqrt(x)) + (1)/sqrt(3) xx (1)/(2sqrt(y))."dy"/"dx"` = 0
∴ `(1)/(2sqrt(3).sqrt(y))."dy"/"dx" = -(1)/(2sqrt(2).sqrt(x)`
∴ `"dy"/"dx" = -(sqrt(3).sqrt(y))/(sqrt(2).sqrt(x)`
= `-sqrt((3y)/(2x)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the nth derivative of the following : log (2x + 3)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`