मराठी

If y=eacos-1x, -1 <= x <= 1 show that (1-x2)d2ydx2-xdydx-a2y=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`

बेरीज

उत्तर

y = `e^(a cos^(-1)x)`

On differentiating with respect to x,

`dy/dx = e^(a cos^(-1)x) d/dx a cos^-1 x`

`= e^(a cos^(-1)x) (- a)/sqrt(1 - x^2) = (- ay)/(sqrt(1 - x^2))`

On multiplying by `sqrt(1 - x^2)`,

`=> sqrt(1 - x^2) dy/dx` = - ay

On squaring,

`(dy/dx)^2 (1 - x^2) = a^2y^2`

Differentiating again with respect to x,

`=> 2 (dy/dx) (d^2y)/dx^2 (1 - x^2) + (dy/dx)^2  (- 2x) = 2a^2 y dy/dx`

Dividing by `2 dy/dx`,

`(d^2y)/dx^2 (1 - x^2) - x dy/dx = a^2 y`

Hence, `(1 - x^2) (d^2y)/dx^2 - x(dy/dx) - a^2 y = 0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.9 | Q 23 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `(d^2y)/(dx^2)` , if y = log x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Find the second order derivatives of the following : log(logx)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×