Advertisements
Advertisements
प्रश्न
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
उत्तर
y = `e^(a cos^(-1)x)`
On differentiating with respect to x,
`dy/dx = e^(a cos^(-1)x) d/dx a cos^-1 x`
`= e^(a cos^(-1)x) (- a)/sqrt(1 - x^2) = (- ay)/(sqrt(1 - x^2))`
On multiplying by `sqrt(1 - x^2)`,
`=> sqrt(1 - x^2) dy/dx` = - ay
On squaring,
`(dy/dx)^2 (1 - x^2) = a^2y^2`
Differentiating again with respect to x,
`=> 2 (dy/dx) (d^2y)/dx^2 (1 - x^2) + (dy/dx)^2 (- 2x) = 2a^2 y dy/dx`
Dividing by `2 dy/dx`,
`(d^2y)/dx^2 (1 - x^2) - x dy/dx = a^2 y`
Hence, `(1 - x^2) (d^2y)/dx^2 - x(dy/dx) - a^2 y = 0`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the second order derivatives of the following : log(logx)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`