Advertisements
Advertisements
प्रश्न
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
उत्तर
y = 5x. x5. xx. 55
Taking log on both sides, we get
log y = log(5x. x5. xx. 55)
= log 5x + log x5 + log xx + log 55
∴ log y = xlog 5 + 5 log x + xlog x + 5log 5
Differentiating w.r.t. x, we get
`"d"/("d"x)(log y) = "d"/("d"x)(x log 5 + 5 log x + x log x + 5 log 5)`
∴ `1/y*("d"y)/("d"x) = log5*"d"/("d"x)(x) + 5*"d"/("d"x)(log x) + x*"d"/("d"x)(log x) + logx* "d"/("d"x)(x) + "d"/("d"x)(5log5)`
= `log5*1 + 5*1/x + x*1/x + logx*1 + 0`
∴ `("d"y)/("d"x) = y(log5 + 5/x + 1 + logx)`
∴ `("d"y)/("d"x) = 5^x* x^5* x^x* 5^5 (log5 + 5/x + 1 + logx)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
`2^(cos^(2_x)`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`