मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If x sin(a + y) + sin a cos(a + y) = 0 then show that dydx=sin2(a+y)sina - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`

बेरीज

उत्तर

x sin(a + y) + sin a cos(a + y) = 0     .......(i)

`x.cos("a" + y)*"d"/("d"x)("a" + y) + sin("a" + y)*"d"/("d"x)(x) + sin"a"[-sin("a" + y)]*"d"/("d"x)("a" + y)` = 0

∴ `xcos("a" + y )("d"y)/("d"x) + sin("a" + y)(1) - sin("a" + y)("d"y)/("d"x)` = 0

∴ `[x cos("a" + y) - sin "a" sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)   .......(ii)

From (i), we get

x = `(-sin"a"cos("a" + y))/(sin("a" + y))`

Substituting the value of x in (ii), we get

`[(-sin"a"cos("a" + y))/(sin("a" + y))*cos("a" + y) - sin"a"sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)

∴ `-sin"a"[(cos^2("a" + y))/(sin("a" + y)) + sin("a" + y)]("d"y)/("d"x)` = − sin(a + y)

∴ `(-sin"a"[cos^2("a" + y) + sin^2("a" + y)])/(sin("a" + y))("d"y)/("d"x)` − sin(a + y)

∴ `-(sin"a"(1))/(sin("a" + y))*("d"y)/("d"x)` = − sin(a + y)

∴ `("d"y)/("d"x) = sin("a" + y) [(sin("a" + y))/(sin"a")]`

∴ `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.1: Differentiation - Short Answers II

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


Find the derivative of 7x w.r.t.x7


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


Find `dy/dx if, x = e^(3t),y=e^((4t+5))`


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×