मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydx, if x = (u+1u)2,y=(2)(u+1u) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`

बेरीज

उत्तर

x = `("u" + 1/"u")^2`      .....(i)

Differentiating both sides w.r.t. u, we get

`"dx"/"du" = 2("u" + 1/"u") * "d"/"dx" ("u" + 1/"u")`

`= 2("u" + 1/"u") [1 + (- 1) "u"^(-2)]`

∴ `"dx"/"du" = 2("u" + 1/"u")(1 - 1/"u"^2)`

`"y" = (2)^(("u" + 1/"u"))`       .....(ii)

Differentiating both sides w.r.t. u, we get

`"dy"/"du" = 2^(("u" + 1/"u")) log 2 "d"/"dx" ("u" + 1/"u")`

∴ `"dy"/"du" = log 2 * 2^(("u" + 1/"u")) (1 - 1/"u"^2)`

∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du")) = (2^(("u" + 1/"u")) log 2 (1 - 1/"u"^2))/(2("u" + 1/"u")(1 - 1/"u"^2))`

`= (2^(("u" + 1/"u")) log 2)/(2("u" + 1/"u"))`

∴ `"dy"/"dx" = ("y" log 2)/(2sqrt"x")`        ....[From (i) and (ii)]

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

APPEARS IN

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


If x = `y + 1/y`, then `dy/dx` = ____.


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


Find `dy/dx if, x = e^(3t),y=e^((4t+5))`


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×