Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
उत्तर
x = `("u" + 1/"u")^2` .....(i)
Differentiating both sides w.r.t. u, we get
`"dx"/"du" = 2("u" + 1/"u") * "d"/"dx" ("u" + 1/"u")`
`= 2("u" + 1/"u") [1 + (- 1) "u"^(-2)]`
∴ `"dx"/"du" = 2("u" + 1/"u")(1 - 1/"u"^2)`
`"y" = (2)^(("u" + 1/"u"))` .....(ii)
Differentiating both sides w.r.t. u, we get
`"dy"/"du" = 2^(("u" + 1/"u")) log 2 "d"/"dx" ("u" + 1/"u")`
∴ `"dy"/"du" = log 2 * 2^(("u" + 1/"u")) (1 - 1/"u"^2)`
∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du")) = (2^(("u" + 1/"u")) log 2 (1 - 1/"u"^2))/(2("u" + 1/"u")(1 - 1/"u"^2))`
`= (2^(("u" + 1/"u")) log 2)/(2("u" + 1/"u"))`
∴ `"dy"/"dx" = ("y" log 2)/(2sqrt"x")` ....[From (i) and (ii)]
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
If x = `y + 1/y`, then `dy/dx` = ____.
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`