मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydxdydx, if x = e3t, y = ete(4t+5) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`

बेरीज

उत्तर

x = e3t 

Differentiating both sides w.r.t. t, we get

`"dx"/"dt" = "e"^"3t" * (3) = 3 "e"^"3t"`  

y = `"e"^(4"t" + 5)`

Differentiating both sides w.r.t. t, we get

`"dy"/"dt" = "e"^((4"t" + 5)) xx 4`

`= 4 * "e"^((4"t" + 5))`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt"))`

= `(4 * "e"^(4"t" + 5))/(3* "e"^(3"t"))`

`= 4/3 e^(4"t" + 5 - 3"t")`

`= 4/3 "e"^("t" + 5)`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


If x = `y + 1/y`, then `dy/dx` = ____.


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×