Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
उत्तर
Let u = 5x and v = log x
u = 5x
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = 5^"x" * log 5`
v = log x
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = 1/"x"`
∴ `"du"/"dv" = (("du"/"dx"))/(("dv"/"dx")) = (5^"x" log 5)/(1/"x") = "x"*5^"x" (log 5)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find the derivative of 7x w.r.t.x7
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.