मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydxdydx, if x = uyu1+u2,y=log(1+u2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`

बेरीज

उत्तर

x = `sqrt(1 + "u"^2)`

Differentiating both sides w.r.t. u, we get

`"dx"/"du" = "d"/"du"(sqrt(1 + "u"^2))`

= `1/(2sqrt(1 + "u"^2)) * "d"/"dx" (1 + "u"^2)`

= `1/(2sqrt(1 + "u"^2)) xx 2"u"`

= `"u"/sqrt(1 + "u"^2)`

y = log (1 + u2)

Differentiating both sides w.r.t. u, we get

`"dy"/"du" = "d"/"dx"[log (1 + "u"^2)]`

= `1/(1 + "u"^2) * "d"/"du" (1 + "u"^2)`

= `1/(1 + "u"^2) xx "2u"`

= `"2u"/(1 + "u"^2)`

∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du"))`

= `(("2u"/(1  +  "u"^2)))/(("u"/sqrt(1  +  "u"^2)))`

= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)/"u"`

= `(2sqrt(1 + "u"^2))/(1+u^2)`

= `(2sqrt(1 + "u"^2))/(sqrt(1+u^2)xxsqrt(1+u^2))`

∴ `"dy"/"dx" = 2/sqrt(1 + "u"^2)`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

APPEARS IN

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×