Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
उत्तर
x = `sqrt(1 + "u"^2)`
Differentiating both sides w.r.t. u, we get
`"dx"/"du" = "d"/"du"(sqrt(1 + "u"^2))`
= `1/(2sqrt(1 + "u"^2)) * "d"/"dx" (1 + "u"^2)`
= `1/(2sqrt(1 + "u"^2)) xx 2"u"`
= `"u"/sqrt(1 + "u"^2)`
y = log (1 + u2)
Differentiating both sides w.r.t. u, we get
`"dy"/"du" = "d"/"dx"[log (1 + "u"^2)]`
= `1/(1 + "u"^2) * "d"/"du" (1 + "u"^2)`
= `1/(1 + "u"^2) xx "2u"`
= `"2u"/(1 + "u"^2)`
∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du"))`
= `(("2u"/(1 + "u"^2)))/(("u"/sqrt(1 + "u"^2)))`
= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)/"u"`
= `(2sqrt(1 + "u"^2))/(1+u^2)`
= `(2sqrt(1 + "u"^2))/(sqrt(1+u^2)xxsqrt(1+u^2))`
∴ `"dy"/"dx" = 2/sqrt(1 + "u"^2)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Find `"dy"/"dx"` if x = 5t2, y = 10t.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.