English

Find dydxdydx, if x = uyu1+u2,y=log(1+u2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`

Sum

Solution

x = `sqrt(1 + "u"^2)`

Differentiating both sides w.r.t. u, we get

`"dx"/"du" = "d"/"du"(sqrt(1 + "u"^2))`

= `1/(2sqrt(1 + "u"^2)) * "d"/"dx" (1 + "u"^2)`

= `1/(2sqrt(1 + "u"^2)) xx 2"u"`

= `"u"/sqrt(1 + "u"^2)`

y = log (1 + u2)

Differentiating both sides w.r.t. u, we get

`"dy"/"du" = "d"/"dx"[log (1 + "u"^2)]`

= `1/(1 + "u"^2) * "d"/"du" (1 + "u"^2)`

= `1/(1 + "u"^2) xx "2u"`

= `"2u"/(1 + "u"^2)`

∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du"))`

= `(("2u"/(1  +  "u"^2)))/(("u"/sqrt(1  +  "u"^2)))`

= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)/"u"`

= `(2sqrt(1 + "u"^2))/(1+u^2)`

= `(2sqrt(1 + "u"^2))/(sqrt(1+u^2)xxsqrt(1+u^2))`

∴ `"dy"/"dx" = 2/sqrt(1 + "u"^2)`

shaalaa.com
Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.5 [Page 97]

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find the derivative of 7x w.r.t.x7


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×