Advertisements
Advertisements
Question
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Solution
x = `sqrt(1 + "u"^2)`
Differentiating both sides w.r.t. u, we get
`"dx"/"du" = "d"/"du"(sqrt(1 + "u"^2))`
= `1/(2sqrt(1 + "u"^2)) * "d"/"dx" (1 + "u"^2)`
= `1/(2sqrt(1 + "u"^2)) xx 2"u"`
= `"u"/sqrt(1 + "u"^2)`
y = log (1 + u2)
Differentiating both sides w.r.t. u, we get
`"dy"/"du" = "d"/"dx"[log (1 + "u"^2)]`
= `1/(1 + "u"^2) * "d"/"du" (1 + "u"^2)`
= `1/(1 + "u"^2) xx "2u"`
= `"2u"/(1 + "u"^2)`
∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du"))`
= `(("2u"/(1 + "u"^2)))/(("u"/sqrt(1 + "u"^2)))`
= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)/"u"`
= `(2sqrt(1 + "u"^2))/(1+u^2)`
= `(2sqrt(1 + "u"^2))/(sqrt(1+u^2)xxsqrt(1+u^2))`
∴ `"dy"/"dx" = 2/sqrt(1 + "u"^2)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
Find `"dy"/"dx"` if x = 5t2, y = 10t.
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find the derivative of 7x w.r.t.x7
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.