English

Find dydx, if x = at2, y = 2at - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"`, if x = at2, y = 2at

Sum

Solution

x = at2 

Differentiating both sides w.r.t. t, we get

`"dx"/"dt" = "d"/"dt" ("at"^2) = "a" "d"/"dt" ("t"^2) = 2 "at"`

y = 2at

Differentiating both sides w.r.t. t, we get

`"dy"/"dt" = "d"/"dt" (2"at") = "a" "d"/"dt" (2"t") = 2 "a"`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")) = "2a"/"2at" = 1/"t"`

∴ `"dy"/"dx" = 1/"t"`

shaalaa.com
Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.5 [Page 97]

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find the derivative of 7x w.r.t.x7


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx if, x = e^(3t),y=e^((4t+5))`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×