English

If x = t . log t, y = tt, then show that dydxydydx-y=0 - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`

Sum

Solution

x = t . log t       

Differentiating both sides w.r.t. t

`dx/dt=td/dt(logt)+logtd/dt(t)`

= `txx1/t+logt(1)`

`dx/dt=1+logt`             ...(i)

y = tt

Taking logarithm of both sides 

logy = logtt

logy = t.logt

Differentiating both sides w.r.t. t

`1/yxxdy/dt=td/dt(logt)+logtd/dt(t)`

= `txx1/t+logt(1)`

= 1 + logt

`dy/dt=y(1+logt)`     ...(ii)

`dy/dx=(dy/dt)/(dx/dt)`

= `(y(1+logt))/((1+logt))`     ...[From (i) & (ii)]

∴ `dy/dx=y`

∴ `dy/dx-y=0`

shaalaa.com
Derivatives of Parametric Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.5 [Page 97]

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×