Advertisements
Advertisements
Question
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Solution
x = `("u" + 1/"u")^2` .....(i)
Differentiating both sides w.r.t. u, we get
`"dx"/"du" = 2("u" + 1/"u") * "d"/"dx" ("u" + 1/"u")`
`= 2("u" + 1/"u") [1 + (- 1) "u"^(-2)]`
∴ `"dx"/"du" = 2("u" + 1/"u")(1 - 1/"u"^2)`
`"y" = (2)^(("u" + 1/"u"))` .....(ii)
Differentiating both sides w.r.t. u, we get
`"dy"/"du" = 2^(("u" + 1/"u")) log 2 "d"/"dx" ("u" + 1/"u")`
∴ `"dy"/"du" = log 2 * 2^(("u" + 1/"u")) (1 - 1/"u"^2)`
∴ `"dy"/"dx" = (("dy"/"du"))/(("dx"/"du")) = (2^(("u" + 1/"u")) log 2 (1 - 1/"u"^2))/(2("u" + 1/"u")(1 - 1/"u"^2))`
`= (2^(("u" + 1/"u")) log 2)/(2("u" + 1/"u"))`
∴ `"dy"/"dx" = ("y" log 2)/(2sqrt"x")` ....[From (i) and (ii)]
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
If x = `y + 1/y`, then `dy/dx` = ____.
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`