Advertisements
Advertisements
Question
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
Solution
Let u = 5x and v = log x
u = 5x
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = 5^"x" * log 5`
v = log x
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = 1/"x"`
∴ `"du"/"dv" = (("du"/"dx"))/(("dv"/"dx")) = (5^"x" log 5)/(1/"x") = "x"*5^"x" (log 5)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.