Advertisements
Advertisements
Question
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
Solution
x = `(4t)/(1 + t^2)`
Differentiating both sides w.r.t. ‘t’, we get
`dx/dt = ((1 + t^2)*d/dx (4t) - 4t * d/dx (1 + t^2))/(1 + t^2)^2`
`= ((1 + t^2)(4) - 4t(0 + 2t))/(1 + t^2)^2`
`= (4 + 4t^2 - 8t^2)/(1 + t^2)^2`
`= (4 - 4t^2)/(1 + t^2)^2`
`= (4(1 - t^2))/(1 + t^2)^2`
y = `3((1 - t^2)/(1 + t^2))`
Differentiating both sides w.r.t. ‘t’, we get
`dy/dt = 3 d/dx ((1 - t^2)/(1 + t^2))`
`= 3 [((1 + t^2) d/dt (1 - t^2) - (1 - t^2) * d/dt (1 + t^2))/(1 + t^2)^2]`
`= 3[((1 + t^2)(0 - 2t) - (1 - t^2)(0 + 2t))/(1 + t^2)^2]`
`= 3 [(-2t (1 + t^2) - 2t(1 - t^2))/(1 + t^2)^2]`
`= 3(- 2t) [(1 + t^2 + 1 - t^2)/(1 + t^2)^2]`
`= - 6t xx 2/(1 + t^2)^2`
`= (- 12t)/(1 + t^2)^2`
∴ `dy/dx = ((dy/dt))/((dx/dt)) = ((-12t)/(1 + t^2)^2)/((4(1 - t^2))/(1 + t^2)^2)`
∴ `dy/dx = (- 3t)/(1 - t^2)` ....(i)
Also `(- 9x)/(4y) = (- 9((4t)/(1 + t^2)))/(4xx3 ((1 - t^2)/(1 + t^2))) = (- 3t)/(1 - t^2)` ....(ii)
From (i) and (ii), we get
`dy/dx = (- 9x)/(4y)`
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x = `y + 1/y`, then `dy/dx` = ____.
Find `"dy"/"dx"` if x = 5t2, y = 10t.
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)`
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find the derivative of 7x w.r.t.x7
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Find `dy/dx if, x = e^(3t),y=e^((4t+5))`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.