Advertisements
Advertisements
Question
If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.
Solution
Given x = f(t) and y = g(t) are differentiable functions of t.
Let δx and δy be the small increments in x and y respectively corresponding to the increment δt in t.
Consider the incrementary ratio `(delta y)/(delta x)` and note that δx → 0 ⇒ δt → 0.
Consider `(delta y)/(delta x) = ((delta y)/(delta t))/((delta x)/(delta t))`, since `(delta x)/(delta t) ne 0`
Taking the limit as δt → 0 on both sides, we get,
`lim _(delta t -> 0) ((delta y)/(delta x)) = lim_(delta t -> 0) (((delta y)/(delta t))/((delta x)/(delta t)))`
As δt → 0, δx → 0
∴ `lim_(delta x -> 0) ((delta y)/(delta x)) = (lim _ (delta t -> 0)(((delta y)/(delta t))/((delta x)/(delta t))))/(lim _ (delta t -> 0)(((delta x)/(delta t))/((delta x)/(delta t))))` ...(i)
Since x and y are differentiable functions of t, we have,
`lim_(delta t -> 0) (delta x)/(delta t) = dx/dt` and
`lim_(delta t -> 0) (delta y)/(delta t) = dy/dt` ...(ii)
exist and are finite
From (i) and (ii),
`lim_(delta x -> 0) (delta y)/(delta x) = (dy/dt)/(dx/dt)` ...(iii)
The R.H.S. of (iii) exists and finite implies L.H.S. of (iii) also exists and finite.
∴ `lim_(delta x -> 0) ((delta y)/(delta x)) = dy/dx`
Thus the equation (iii) becomes,
`dy/dx = (dy/dt)/(dx/dt), dx/dt ne 0`
Now, x = at2 and y = 2at
⇒ `dx/dt = 2at` and
`dy/dt = 2a`
∴ `dy/dx = (dy/dt)/(dx/dt) = (2 a)/(2 at) = 1/t`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`
Find `"dy"/"dx"`, if Differentiate 5x with respect to log x
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x = `y + 1/y`, then `dy/dx` = ____.
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
Choose the correct alternative:
If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ?
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
State whether the following statement is True or False:
If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`
If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Find the derivative of 7x w.r.t.x7
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`
Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`
Find `dy/dx` if, `x = e^(3t), y = e^((4t + 5))`