मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and dxdt≠0 then prove that dydx=dydtdxdt. Hence find dydx, if x = at2, y = 2at. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.

बेरीज

उत्तर

Given x = f(t) and y = g(t) are differentiable functions of t.

Let δx and δy be the small increments in x and y respectively corresponding to the increment δt in t.

Consider the incrementary ratio `(delta y)/(delta x)` and note that δx → 0 ⇒ δt → 0.

Consider `(delta y)/(delta x) = ((delta y)/(delta t))/((delta x)/(delta t))`, since `(delta x)/(delta t) ne 0`

Taking the limit as δt → 0 on both sides, we get,

`lim _(delta t -> 0) ((delta y)/(delta x)) = lim_(delta t -> 0) (((delta y)/(delta t))/((delta x)/(delta t)))`

As δt → 0, δx → 0

∴ `lim_(delta x -> 0) ((delta y)/(delta x)) = (lim _ (delta t -> 0)(((delta y)/(delta t))/((delta x)/(delta t))))/(lim _ (delta t -> 0)(((delta x)/(delta t))/((delta x)/(delta t))))`    ...(i)

Since x and y are differentiable functions of t, we have,

`lim_(delta t -> 0) (delta x)/(delta t) = dx/dt` and

`lim_(delta t -> 0) (delta y)/(delta t) = dy/dt`    ...(ii)

exist and are finite

From (i) and (ii),

`lim_(delta x -> 0) (delta y)/(delta x) = (dy/dt)/(dx/dt)`    ...(iii)

The R.H.S. of (iii) exists and finite implies L.H.S. of (iii) also exists and finite.

∴ `lim_(delta x -> 0) ((delta y)/(delta x)) = dy/dx`

Thus the equation (iii) becomes,

`dy/dx = (dy/dt)/(dx/dt), dx/dt ne 0`

Now, x = at2 and y = 2at

⇒ `dx/dt = 2at` and

`dy/dt = 2a`

∴ `dy/dx = (dy/dt)/(dx/dt) = (2 a)/(2 at) = 1/t`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Official

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = 2at2 , y = at4


Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Find `"dy"/"dx"`, if Differentiate 5x with respect to log x


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^(4t+5)`


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


 Find `dy/dx if,x = e^(3^T), y = e^((4t + 5)`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×