मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If x = 4t1+t2, y=3(1-t21+t2) then show that dydx=-9x4y. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.

बेरीज

उत्तर

x = `(4t)/(1 + t^2)`

Differentiating both sides w.r.t. ‘t’, we get

`dx/dt = ((1 + t^2)*d/dx (4t) - 4t * d/dx (1 + t^2))/(1 + t^2)^2`

`= ((1 + t^2)(4) - 4t(0 + 2t))/(1 + t^2)^2`

`= (4 + 4t^2 - 8t^2)/(1 + t^2)^2`

`= (4 - 4t^2)/(1 + t^2)^2`

`= (4(1 - t^2))/(1 + t^2)^2`

y = `3((1 - t^2)/(1 + t^2))`

Differentiating both sides w.r.t. ‘t’, we get

`dy/dt = 3 d/dx ((1 - t^2)/(1 + t^2))`

`= 3 [((1 + t^2) d/dt (1 - t^2) - (1 - t^2) * d/dt (1 + t^2))/(1 + t^2)^2]`

`= 3[((1 + t^2)(0 - 2t) - (1 - t^2)(0 + 2t))/(1 + t^2)^2]`

`= 3 [(-2t (1 + t^2) - 2t(1 - t^2))/(1 + t^2)^2]`

`= 3(- 2t) [(1 + t^2 + 1 - t^2)/(1 + t^2)^2]`

`= - 6t xx 2/(1 + t^2)^2`

`= (- 12t)/(1 + t^2)^2`

∴ `dy/dx = ((dy/dt))/((dx/dt)) = ((-12t)/(1 + t^2)^2)/((4(1 - t^2))/(1 + t^2)^2)`

∴ `dy/dx = (- 3t)/(1 - t^2)`   ....(i)

Also `(- 9x)/(4y) = (- 9((4t)/(1 + t^2)))/(4xx3 ((1 - t^2)/(1 + t^2))) = (- 3t)/(1 - t^2)`     ....(ii)

From (i) and (ii), we get

`dy/dx = (- 9x)/(4y)`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = at2, y = 2at


Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`


State whether the following statement is True or False:

If x = 5m, y = m, where m is parameter, then `("d"y)/("d"x) = 1/5`


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`

Solution: Given, x = em and y = `"e"^(sqrt("m"))`

Now, y = `"e"^(sqrt("m"))`

Diff.w.r.to m,

`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`

∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))`    .....(i)

Now, x = em

Diff.w.r.to m,

`("d"x)/"dm" = square`    .....(ii)

Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`

∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`

∴  `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`


If x = `sqrt(1 + u^2)`, y = `log(1 + u^2)`, then find `(dy)/(dx).`


Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`


If x = f(t) and y = g(t) are differentiable functions of t, then prove that:

`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`

Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


Find `dy/dx` if, `x=e^(3t), y=e^((4t+5))`


Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`


Find `dy/dx` if,  `x = e^(3t), y = e^((4t + 5))`


Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`


Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×