मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydx, if x = at2, y = 2at - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if x = at2, y = 2at

बेरीज

उत्तर

x = at2 

Differentiating both sides w.r.t. t, we get

`"dx"/"dt" = "d"/"dt" ("at"^2) = "a" "d"/"dt" ("t"^2) = 2 "at"`

y = 2at

Differentiating both sides w.r.t. t, we get

`"dy"/"dt" = "d"/"dt" (2"at") = "a" "d"/"dt" (2"t") = 2 "a"`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")) = "2a"/"2at" = 1/"t"`

∴ `"dy"/"dx" = 1/"t"`

shaalaa.com
Derivatives of Parametric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.5 [पृष्ठ ९७]

APPEARS IN

संबंधित प्रश्‍न

Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`


Find `"dy"/"dx"`, if x = `sqrt(1 + "u"^2), "y" = log (1 + "u"^2)`


Solve the following.

If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`


If x = `(4t)/(1 + t^2),  y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.


If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`


Choose the correct alternative.

If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`


If x = `y + 1/y`, then `dy/dx` = ____.


Find `"dy"/"dx"` if x = 5t2, y = 10t.  


If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`


Choose the correct alternative:

If x = 2am, y = 2am2, where m be the parameter, then `("d"y)/("d"x)` = ? 


If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?


If x = `(4"t")/(1 + "t"^2)`, y = `3((1 - "t"^2)/(1 + "t"^2))`, then show that `("d"y)/("d"x) = (-9x)/(4y)` 


Find `dy/dx`  if,  `x = e^(3t) , y = e^sqrtt`


Find the derivative of 7x w.r.t.x7


Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`

Hence, find `d/dx(tan^-1x)`.


Find `dy/dx` if, x = e3t, y = `e^((4t+5))`


If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and `(dx)/dt ≠ 0` then prove that `dy/(dx) = (dy/dt)/((dx)/dt)`. Hence find `dy/(dx)`, if x = at2, y = 2at.


 Find `dy/dx` if,

`x = e ^(3^t), y = e^((4t + 5))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×