मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following: If exeyex + yex+ey=ex + y then show that, dydxey - xdydx=-ey - x. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.

बेरीज

उत्तर

`"e"^"x" + "e"^"y" = "e"^("x + y")`    .....(i)

Differentiating both sides w.r.t.x, we get,

`"d"/"dx" "e"^"x" + "d"/"dx" "e"^"y" = "d"/"dx" "e"^("x + y")`

`"e"^"x" "d"/"dx" "x"  + "e"^"y" "d"/"dx" "y" = "e"^("x + y") "d"/"dx" ("x + y")   ...("d"/"dx" "e"^"x" = "e"^"x")`

`"e"^"x". (1) + "e"^"y" "dy"/"dx" = "e"^("x + y"). ["d"/"dx" "x" + "d"/"dx" "y"]  ...("d"/"dx" "x" = 1)`

∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") [1 + "dy"/"dx"]`

∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") + "e"^("x + y") "dy"/"dx"`

∴ `("e"^"y" − "e"^("x + y")) "dy"/"dx" = "e"^("x + y") − "e"^"x"`

∴ `["e"^"y" − ("e"^"x" + "e"^"y")] "dy"/"dx" = ("e"^"x" + "e"^"y") − "e"^"x"  ...["From (i)"]`

∴ `("e"^"y" - "e"^"x" - "e"^"y") "dy"/"dx" = ("e"^"x" + "e"^"y" - "e"^"x")`

∴ `(- "e"^"x") "dy"/"dx" = ("e"^"y")`

∴ `"dy"/"dx" = - ("e"^"y")/("e"^"x")`

∴ `"dy"/"dx" = - "e"^("y - x")`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.4 [पृष्ठ ९५]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

2x + 3y = sin y


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `(dy)/(dx) if y = cos^-1 (√x)`


Discuss extreme values of the function f(x) = x.logx


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×