Advertisements
Advertisements
प्रश्न
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
उत्तर
Given:
`⇒ f(x) = {(-(x-1) - (x -3), x<1),(x - 1-(x -3), 1le x <3),((x-1)+(x-3), xge 3):}`
We check differentiability at x = 2
(LHD at x = 2)
\[\lim_{x \to 2^-} \frac{f(x) - f(2)}{x - 2}\]
\[ = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{2 - h - 2} \]
\[ = \lim_{h \to 0} \frac{2 - 2}{- h} \]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
xy + y2 = tan x + y
if `x^y + y^x = a^b`then Find `dy/dx`
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find `dy/dx if x^3 + y^2 + xy = 7`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
y = `e^(x3)`
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`