मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : tan-1(x(3-x)1-3x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : tan-1(x(3-x)1-3x)

बेरीज

उत्तर

Let y = tan-1(x(3-x)1-3x)

= tan-1[3x-xx1-3x]

Put x=tanθ. Thenθ = tan-1(x)

∴ y = tan-1(3tanθ-tan3θ1-3tan2θ)
= tan–1 (tan3θ)
= 3θ
= 3tan-1(x)

dydx=3ddx[tan-1(x)]

= 3×11+(x)2.ddx(x)

= 31+x×12x

= 32x(1+x).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Miscellaneous Exercise 1 (II) [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 4.3 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  xdydx=ylogy


Find dy/dx if x sin y + y sin x = 0.


Find  dydx in the following:

2x + 3y = sin x


Find dxdy in the following.

x2 + xy + y2 = 100


Find dydx in the following.

x3 + x2y + xy2 + y3 = 81


Show that the derivative of the function f given by 

f(x)=2x39x2+12x+9, at x = 1 and x = 2 are equal.

Examine the differentialibilty of the function f defined by

f(x)={2x+3 if 3x2x+1x+2 if 2x<0 if 0x1 


If  limxcf(x)f(c)xc  exists finitely, write the value of  limxcf(x)


Let f(x){ax2+1,x>1x+1/2,x1 . Then, f (x) is derivable at x = 1, if 


Differentiate tan-1 (cot 2x) w.r.t.x.


If y = cosx+cosx+cosx+..., then show that dydx=sinx1-2y.


Find dydx if x = a cot θ, y = b cosec θ


Find dydx, if : x=cos-1(2t1+t2),y=sec-1(1+t2)


Find dydx if : x = a cos3θ, y = a sin3θ at θ = π3


Find dydx if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = π4


If x = t+1t-1,y=t-1t+1,then show that y2+dydx = 0.


Differentiate sin-1(2x1+x2)w.r.t.cos-1(1-x21+x2)


Differentiate cos-1(1-x21+x2)w.r.t.tan-1x.


Differentiate tan-1(cosx1+sinx)w.r.t.sec-1x.


Find d2ydx2 of the following : x = a(θ – sin θ), y = a(1 – cos θ)


Find d2ydx2 of the following : x = sinθ, y = sin3θ at θ = π2


If y = emtan-1x, show that (1+x2)d2ydx2+(2x-m)dydx = 0.


If y = x + tan x, show that cos2x.d2ydx2-2y+2x = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If sec-1(7x3-5y373+5y3)=m,show d2ydx2 = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives : 

Let f(1)=3,f(1)=-13,g(1)=-4andg(1)=-83. The derivative of [f(x)]2+[g(x)]2 w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = tan-1(x1+1-x2)+sin[2tan-1(1-x1+x)]thendydx = ...........


If y tan-1(a-xa+ x), where – a < x < a, then dydx = .........


Differentiate the following w.r.t. x : sin[2tan-1(1-x1+x)]


Differentiate the following w.r.t. x:

tan-1(x1+6x2)+cot-1(1-10x27x)


DIfferentiate tan-1(1+x2-1x)w.r.t.tan-1(2x1-x21-2x2).


Differentiate tan-1(1+x2-1x) w.r.t. cos-1(1+1+x221+x2)


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Solve the following:

If x5y7=(x + y)12 then show that, dydx=yx


If log (x + y) = log (xy) + a then show that, dydx=-y2x2.


Choose the correct alternative.

If x = et+e-t2,y=et-e-t2  then dydx = ? 


If x7y9=(x + y)16, then show that dydx=yx


If xayb=(x + y)a + b, then show that dydx=yx


Find dydx if x = e3t, y=et.


If x2 + y2 = 1, then d2xdy2 = ______.


If y = tanx, find dydx.


If x = sin θ, y = tan θ, then find dydx.


State whether the following statement is True or False:

If x+y=a, then dydx=12x+12y=12a


dydx of 2x+3y=sinx is:-


y = ex3


Find d2ydy2, if y = e4x


Let y = y(x) be a function of x satisfying y1-x2=k-x1-y2 where k is a constant and y(12)=-14. Then dydx at x = 12, is equal to ______.


If y = tanx+tanx+tanx+....+ , then show that dydx=sec2x2y-1.

Find dydx at x = 0.


Find dydxif,x=e3t,y=et


Iflog(x+y)=log(xy)+a then show that,dydx=-y2x2


Find dydx if , x = e3t,y=et


If log (x + y) = log (xy) + a then show that, dydx=y2x2


Find dydxif,x=e3t,y=et


Find dydx if, x = e3t, y = et


Find dydx if, x=e3t,y=et


Find dydx if, x=e3t,y=et


If log(x + y) = log(xy) + a, then show that dydx=-y2x2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.