मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the nth derivative of the following : y = eax . cos (bx + c) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the nth derivative of the following : y = eax . cos (bx + c)

बेरीज

उत्तर

y = eax . cos (bx + c)

∴ `"dy"/"dx" = "d"/"dx"[e^(ax).cos[bx + c)]`

= `e^(ax)."d"/"dx"[cos(bx + c)] + cos(bx + c)."d"/"dx"(e^(ax))`

= `e^(ax).[-sin(bx + c)]."d"/"dx"(bx + c) + cos(bx + c).e^(ax)."d"/"dx"(ax)`

= – eax sin (bx + c) x (b x 1 + 0) + eaxcos(bx + c) x a x 1

= eax [a cos (bx + c) – b sin (bx + c)]

= `e^(ax).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c) - b/sqrt(a^2 + b^2)sin(bx + c)]`

Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`

Then tan ∞ = `b/a`

∴ ∞ = `tan^-1(b/a)`

∴ `"dy"/"dx" = e^(ax).sqrt(a^2 + b^2)[cos∞.cos(bx + c) - sin∞.sin(bx + c)]`

= `e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + x)`

`(d^2y)/(dx^2) = "d"/"dx"[e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + ∞)]`

= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(ax).cos(bx + c + ∞)]`

= `(a^2 + b^2)^(1/2)[e^(ax)."d"/"dx"{cos(bx + c + ∞)} + cos(bx + c + ∞)."d"/"dx"(e^(ax))]`

= `(a^2 + b^2)^(1/2)[e^(ax).{-sin(bx + c + ∞)}."d"/"dx"(bx + c + ∞) + cos(bx +c + ∞).e^(ax)."d"/"dx"(ax)]`

= `(a^2 + b^2)^(1/2)[-e^(ax)sin(bx + c + ∞) xx (b xx 1 + 0 + 0) + cos(bx + c + ∞).e^(ax) xx a xx 1]`

= `e^(ax).(a^2 + b^2)^(1/2)[a cos (bx + c + ∞) - bsin(bx + c + ∞)]`

= `e^(ax).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c + ∞) = b/sqrt(a^2 + b^2)sin(bx + c + ∞)]`

= `e^(ax).(a^2 + b^2)^(2/2)[cos∞.cos(bx + c + ∞) - sin∞.sin(bx + c + ∞)`

= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + ∞ + ∞)`

= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + 2∞)`
Similarly.
`(d^3y)/(dx^3) = e^(ax).(a^2 + b^2)^(3/2).cos(bx + c + 3∞)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos(bx + c + n oo)`,

Where ∞ = `tan^-1(b/a)`

∴ `(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos[bx + c + ntan^-1(b/a)]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

ax + by2 = cos y


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


Is |sin x| differentiable? What about cos |x|?


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx) if y = cos^-1 (√x)`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


Discuss extreme values of the function f(x) = x.logx


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


DIfferentiate x sin x w.r.t. tan x.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(d^2y)/(dy^2)`, if y = e4x


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×