मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If x = a sin t – b cos t, y = a cos t + b sin t, show that d2ydx2=-x3+y2y3. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.

बेरीज

उत्तर

x = a sin t – b cos t, y = a cos t + b sin t
Differentiating x and y w.r.t. t, we get

`"dx"/"dt" = a"d"/"dx" (sint) - b"d"/"dt"(cost)`
= a cos t – b( – sin t)
= a cos t + b sin t
and
`"dy"/"dt" = a"d"/"dx"(cos t) - b"d"/"dt"(sint)`
= a(– sin t) + b cos t
= – a sin t + b cos t

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")`

= `(-asint + bcost)/(acost + bsint)`

= `-((asint - bcost)/(acost + bsint))`

∴ `"dy"/"dx" = -x/y`                    ...(1)

∴ `(d^2y)/(dx^2) = -"d"/"dx"(x/y)`

= `-[(y"d"/"dx"(x) - x"dy"/"dx")/y^2]`

= `-[(y xx 1 - x(-x/y))/y^2]`         ...[By (1)]

= `-[(y^2 + x^2)/y^3]`

∴ `(d^2y)/(dx^2) = -(x^2 + y^2)/y^3`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Differentiate e4x + 5 w.r..t.e3x


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx) if y = cos^-1 (√x)`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate xx w.r.t. xsix.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : cos x


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


y = `e^(x3)`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `(d^2y)/(dy^2)`, if y = e4x


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×