मराठी

Let F ( X ) { a X 2 + 1 , X > 1 X + 1 / 2 , X ≤ 1 . Then, F (X) is Derivable at X = 1, If (A) a = 2 (B) a = 1 (C) a = 0 (D) a = 1/2 - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 

पर्याय

  • a = 2

  • a = 1

  • a = 0

  • a = 1/2

MCQ

उत्तर

(d) a = 1/2 

Given:  

`f(x) = {(ax^2 +1 , x>1),(x +1/2, xle 1):}`

The function is derivable at x = 1, iff left hand derivative and right hand derivative of the function are equal at x = 1.

\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{1 - h - 1}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{\left( 1 - h + \frac{1}{2} \right) - \frac{3}{2}}{- h} = 1\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{1 + h - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{a \left( 1 + h \right)^2 + 1 - \frac{3}{2}}{h}\]
\[\left( \text { RHD at x } = 1 \right) = \lim_{h \to 0} \frac{a\left( 1 + h^2 + 2h \right) - \frac{1}{2}}{h}\]
\[ \because\text {  LHD = RHD }\]
\[ \Rightarrow a - \frac{1}{2} = 0\]
\[ \Rightarrow a = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 15 | पृष्ठ १८

संबंधित प्रश्‍न

Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


if `x^y + y^x = a^b`then Find `dy/dx`


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Is |sin x| differentiable? What about cos |x|?


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) if y = cos^-1 (√x)`


Differentiate tan-1 (cot 2x) w.r.t.x.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, yex + xey = 1 


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


y = `e^(x3)`


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×