मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydxdydx, if : x = (t+1t),y=a(t+1t), where a > 0, a ≠ 1, t ≠ 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.

बेरीज

उत्तर

x = `(t + 1/t), y = a(t + 1/t)`            ...(1)
Differentiating x and y w.r.t. x, we get
`"dx"/"dt" = "d"/"dt"(t + 1/t)^a`

= `a(t + 1/t)^(a - 1)."d"/"dt"(t + 1/t)`

= `a(t + 1/t)^(a - 1).(1 - 1/t^2)`
and
`"dy"/"dt" = "d"/"dt"[a^((t + 1/t))]`

= `a^((t + 1/t)).loga."d"/"dt"(t + 1/t)`

= `a^((t + 1/t)).loga.(1 - 1/t^2)`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt"))`

= `(a^((t + 1/t)).loga.(1 - 1/t^2))/(a(t + 1/t)^(a- 1).(1 - 1/t^2)`

= `(a^(t +1/t).loga.(t + 1/t))/(a.(t + 1/t)^a`

= `(yloga.((t^2 + 1)/t))/"ax"`         ...[By (1)]

= `(y(t^2 + 1)loga)/"axt"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


if `x^y + y^x = a^b`then Find `dy/dx`


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) if y = cos^-1 (√x)`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Find `(d^2y)/(dy^2)`, if y = e4x


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×