Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
उत्तर
x = sin3 θ
differentlating w.r.t. θ
`"dy"/("d" theta) = 3 "sin"^2 theta . "cos" theta`
Y = cos3θ
Differentiating w.r.t. θ
`"dy"/("d" theta) = 3"cos"^2 theta (-"sin" theta)`
= -3 cos2 θ . sin θ
`"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d" theta)) = (-3"cos"^2 theta . "sin" theta)/(3"sin"^2 theta . "cos" theta) = ("- cos" theta)/("sin" theta) = - "cot" theta`
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `x^y + y^x = a^b`then Find `dy/dx`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos (3 – 2x)
Find the nth derivative of the following : y = eax . cos (bx + c)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, yex + xey = 1
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
y = `e^(x3)`
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.