Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
उत्तर
x = sin3 θ
differentlating w.r.t. θ
`"dy"/("d" theta) = 3 "sin"^2 theta . "cos" theta`
Y = cos3θ
Differentiating w.r.t. θ
`"dy"/("d" theta) = 3"cos"^2 theta (-"sin" theta)`
= -3 cos2 θ . sin θ
`"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d" theta)) = (-3"cos"^2 theta . "sin" theta)/(3"sin"^2 theta . "cos" theta) = ("- cos" theta)/("sin" theta) = - "cot" theta`
APPEARS IN
संबंधित प्रश्न
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Write the derivative of f (x) = |x|3 at x = 0.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : cos x
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y