Advertisements
Advertisements
प्रश्न
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
पर्याय
`(-y)/x`
`y/x`
`sec^2 (y/x)`
`-sec^2 (y/x)`
उत्तर
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to `underlinebb(y/x)`.
Explanation:
Given
`tan((x + y)/(x - y))` = k
`(x + y)/(x - y)` = tan–1 k
On differentiating both sides, w.r.t. x, we get
`((x - y)d/dx(x + y) - (x + y)d/dx(x - y))/(x - y)^2 = d/dx [tan^-1 k]`
`\implies ((x - y)(1 + dy/dx) - (x + y)(1 - dy/dx))/(x - y)^2` = 0
`\implies (x - y)(1 + dy/dx) - (x + y)(1 - dy/dx)` = 0
`\implies (x - y) + (x - y) dy/dx = (x + y) - (x + y) dy/dx`
`\implies [(x - y) + (x + y)] dy/dx` = (x + y) – (x – y)
`\implies 2x dy/dx` = 2y
`\implies dy/dx = y/x`.
APPEARS IN
संबंधित प्रश्न
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
If f (x) = |x − 2| write whether f' (2) exists or not.
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, xy = log (xy)
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y