Advertisements
Advertisements
प्रश्न
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
उत्तर
`"x"^7*"y"^9 = ("x + y")^16`
Taking logarithm of both sides, we get
log `"x"^7*"y"^9` = log `("x + y")^16`
∴ log `"x"^7 + log "y"^9 = 16 log ("x + y")`
∴ 7 log x + 9 log y = 16 log (x + y)
Differentiating both sides w.r.t. x, we get
`7(1/"x") + 9(1/"y") "dy"/"dx" = 16(1/("x + y")) "d"/"dx" ("x + y")`
∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") (1 + "dy"/"dx")`
∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") + 16/("x + y") "dy"/"dx"`
∴ `9/"y" "dy"/"dx" - 16/("x + y") "dy"/"dx" = 16/("x + y") - 7/"x"`
∴ `(9/"y" - 16/("x + y")) "dy"/"dx" = 16/("x + y") - 7/"x"`
∴ `[("9x" + "9y" - 16"y")/("y"("x + y"))] "dy"/"dx" = (16"x" - 7"x" - 7"y")/("x"("x + y"))`
∴ `[("9x" - 7"y")/("y"("x + y"))] "dy"/"dx" = ("9x" - 7"y")/("x"("x + y"))`
∴ `"dy"/"dx" = ("9x" - 7"y")/("x"("x + y")) xx ("y"("x + y"))/("9x" - 7"y")`
∴ `"dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Is |sin x| differentiable? What about cos |x|?
If f (x) = |x − 2| write whether f' (2) exists or not.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
Find the nth derivative of the following : `(1)/(3x - 5)`
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx"` if, xy = log (xy)
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`