मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y2 = a2cos2x + b2sin2x, show that y+d2ydx2=a2b2y3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`

बेरीज

उत्तर

y2 = a2cos2x + b2sin2x                           ...(1)
Differentiating both sides w.r.t. x, we get

`2y"dy"/"dx" = a^2"d"/"dx"(cosx)^2 + b^2"d"/"dx"(sinx)^2`

= `a^2 xx 2cosx."d"/"dx"(cosx) + b^2 xx 2sinx."d"/'dx"(sinx)`

= a2 x 2 cos x (– sin x) + b2 x 2 sin x cos x
= (b2 – a2) sin2x

∴ `y"dy"/"dx" = ((b^2 - a^2)/2)sin2x`    ...(2)

Differentiating again w.r.t. x, we get

`y."d"/"dx"(dy/dx) + "dy"/"dx"."dy"/"dx" = ((b^2 - a^2)/2)."d"/"dx"(sin2x)`

∴ `y(d^2y)/(dx^2) + (dy/dx)^2 = ((b^2 - a^2)/2) xx cos2x xx 2`

∴ `y(d^2y)/(dx^2) + (dy/dx)^2 = (b^2 - a^2)cos2x`

∴ `y^3(d^2y)/(dx^2) +y^2 (dy/dx)^2 = y^2(b^2 - a^2)cos2x`

∴ `y^3(d^2y)/(dx^2) = y^2(b^2 - a^2)cos2x - y^2(dy/dx)^2`

∴ `y^4 + y^3(d^2y)/(dx^2) = y^2(b^2 - a^2)cos2x - y^2(dy/dx)^2 + y^4`

= (a2cos2x + b2sin2x)(b2 – a2)(cos2x – sin2x) – [(b2 – a2)sin x cosx]2 + (a2cos2x + b2sin2x)2    ...[By (1) and (2)]

= (a2b2cos2x – a4cos2x + b4sin2x – a2b2sin2x) x (cos2x –sin2x) – (b4sin2xcos2x + a4sin2xcos2x  – 2a2b2sin2x cos2x) + (a4cos4x + b4sin4x + b4sin4x + 2a2b2sin2x cos2x)

= a2b2cos4x – a2b2sin2xcos2x – a4cos4x + a4sin2xcos2x + b4sin2xcos2x – b4sin2xcos2x – a4sin2xcos2x + 2a2b2sin2xcos2x + a4cos4x + b4x + b4sin4x + 2a2b2sin2xcos2x

= a2b2cos4x + 2a2b2sin2xcos2x + a2b2sin4x
= a2b2 (sin4x + 2sin2x cos2x + cos4x)

∴ `y^4 + y^3(d^2y)/(dx^2)` = a2b2      ...[∵ sin2x + cos2x = 1]

∴ `y^3(y + (d^2y)/(dx^2))` = a2b2 

∴ `y + (d^2y)/(dx^2) = (a^2b^2)/(y^3)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Miscellaneous Exercise 1 (II) [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 7.1 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find dy/dx if x sin y + y sin x = 0.


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Is |sin x| differentiable? What about cos |x|?


Write the derivative of f (x) = |x|3 at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Differentiate tan-1 (cot 2x) w.r.t.x.


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`(dy)/(dx)` of `2x + 3y = sin x` is:-


y = `e^(x3)`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `(d^2y)/(dy^2)`, if y = e4x


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×