Advertisements
Advertisements
प्रश्न
Write the derivative of f (x) = |x|3 at x = 0.
उत्तर
Given:
(LHD at x = 0)
\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x}\]
\[ = \lim_{h \to 0} \frac{h^3}{- h} \]
\[ = 0\]
(RHD at x = 0)
\[\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} \]
\[ = \lim_{x \to 0^+} \frac{f(0 + h) - f(0)}{x}\]
\[ = \lim_{h \to 0} \frac{h^3 - 0}{h} \]
\[ = 0\]
and
Thus, (LHD at x=0) = (RHD at x = 0) =
Hence,
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following : y = eax . cos (bx + c)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`