English

Write the Derivative of F (X) = |X|3 at X = 0. - Mathematics

Advertisements
Advertisements

Question

Write the derivative of f (x) = |x|3 at x = 0.

Answer in Brief

Solution

Given:  

 
`f(x) = |x|^3 = {(x^3, xge0),(-x^3 , x<0):}`

(LHD at = 0)

\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x}\]
\[ = \lim_{h \to 0} \frac{h^3}{- h} \]
\[ = 0\]

(RHD at x = 0)

\[\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} \]
\[ = \lim_{x \to 0^+} \frac{f(0 + h) - f(0)}{x}\]
\[ = \lim_{h \to 0} \frac{h^3 - 0}{h} \]
\[ = 0\]

and 

\[f(0) = 0 .\]

Thus, (LHD at x=0) = (RHD at x = 0) = 

\[f(0)\]

Hence, 

\[\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 0\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.3 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.3 | Q 9 | Page 17

RELATED QUESTIONS

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Find `(dy)/(dx) if y = cos^-1 (√x)`


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


y = `e^(x3)`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×