English

Choose the correct alternative. If ax2 + 2hxy + by2 = 0 then dydx=? - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 

Options

  • `(("ax" + "hx"))/(("hx" + "by"))`

  • `(-("ax" + "hx"))/(("hx" + "by"))`

  • `(("ax" - "hx"))/(("hx" + "by"))`

  • `(("2ax" + "hy"))/(("hx" + "3by"))`

MCQ
Sum

Solution

`(-("ax" + "hx"))/(("hx" + "by"))`

Explanation:

ax2 + 2hxy + by2 = 0

Differentiating both sides w.r.t.x, we get

`"a"(2"x") + "2h" * "d"/"dx" ("xy") + "b"("2y") "dy"/"dx" = 0`

∴ 2ax + 2h `["x" * "dy"/"dx" + "y"(1)] + 2"by" "dy"/"dx" = 0`

∴ 2ax + 2hx `"dy"/"dx"` + 2hy + 2by`"dy"/"dx"` = 0

∴ 2`"dy"/"dx"`(hx + by) = - 2ax - 2hy

∴ 2`"dy"/"dx" = (-2("ax" + "hy"))/(("hx" + "by"))`

∴ `"dy"/"dx" = (-("ax" + "hx"))/(("hx" + "by"))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 99]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 7) | Page 99

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Find `dy/dx if x^3 + y^2 + xy = 7`


Differentiate e4x + 5 w.r..t.e3x


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


Find `(d^2y)/(dy^2)`, if y = e4x


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×