Advertisements
Advertisements
Question
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
Options
8
4
5
20
Solution
8
Explanation:
x4. y5 = (x + y)m + 1 ...(i)
∴ `"d"/"dx" ("x"^4. "y"^5) = "d"/"dx" ("x" + "y")^("m" + 1)`
∴ `"x"^4 "d"/"dx" "y"^5 + "y"^5 "d"/"dx" "x"^4 = ("m" + 1)("x" + "y")^("m" + 1 − 1) . "d"/"dx" ("x" + "y")`
∴ `"x"^4 . 5"y"^4 "d"/"dx" "y"+ "y"^5 4"x"^3 "d"/"dx" "x" = ("m" + 1)("x" + "y")^"m" ["d"/"dx" "x" + "d"/"dx" "y"]`
∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 . 1 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`
∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`
Put `"dy"/"dx" = "y"/"x"`
∴ `5"x"^((cancel4)3)"y"^4 . "y"/cancel"x" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "y"/"x"]`
∴ `5"x"^3"y"^4 . "y" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`
∴ `5"x"^3"y"^5 + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`
∴ `9"x"^3"y"^5 = ("m" + 1)/"x" [("x" + "y")^("m" + 1)]`
∴ `9"x"^3"y"^5 = ("m" + 1)/cancel"x" "x"^((cancel4)3)."y"^5`
∴ `9cancel("x"^3"y"^5) = ("m" + 1) cancel("x"^3"y"^5)`
∴ 9 = m + 1
∴ m = 9 - 1
∴ m = 8
APPEARS IN
RELATED QUESTIONS
If y=eax ,show that `xdy/dx=ylogy`
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
Show that the derivative of the function f given by
If f (x) = |x − 2| write whether f' (2) exists or not.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following : eax+b
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.