English

If X = Tan-1t and Y = T3 , Find D Y D X . - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = tan-1t and y = t3 , find `(dy)/(dx)`.

Sum

Solution

x = tan-1t and y = t3 

∴ `(dx)/(dt) = 1/(1 + t^2)   "and"    (dy)/(dt) = 3t^2`

∴ `(dy)/(dx) = ((dy/dt))/((dx/dt)) = (3t^2)/(1/(1 + t^2))`

⇒ `(dy)/(dx) = 3t^2(1 + t^2)`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

Find `dy/dx` in the following:

2x + 3y = sin y


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) if y = cos^-1 (√x)`


Differentiate tan-1 (cot 2x) w.r.t.x.


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


Find `"dy"/"dx"` if, yex + xey = 1 


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


y = `e^(x3)`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×