English

If F ( X ) = X 3 + 7 X 2 + 8 X − 9 , Find F'(4). - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).

Answer in Brief

Solution

Given:  

\[f(x) = x^3 + 7 x^2 + 8x - 9\]

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of 

\[f\] at 
\[x\]  is given by:
\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{(x + h )^3 + 7(x + h )^2 + 8(x + h) - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{x^3 + h^3 + 3 x^2 h + 3x h^2 + 7 x^2 + 7 h^2 + 14xh + 8x + 8h - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h^3 + 3 x^2 h + 3x h^2 + 7 h^2 + 14xh + 8h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 3 x^2 + 3xh + 7h + 14x + 8)}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} h^2 + 3 x^2 + 3xh + 7h + 14x + 8\]
\[ \Rightarrow f'(x) = 3 x^2 + 14x + 8\]

Thus,

\[f'(4) = 3 \times 4^2 + 14 \times 4 + 8 \]
\[ = 48 + 56 + 8\]
\[ = 112\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.2 | Q 5 | Page 16

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×