Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
उत्तर
Given:
Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{(x + h )^3 + 7(x + h )^2 + 8(x + h) - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{x^3 + h^3 + 3 x^2 h + 3x h^2 + 7 x^2 + 7 h^2 + 14xh + 8x + 8h - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h^3 + 3 x^2 h + 3x h^2 + 7 h^2 + 14xh + 8h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 3 x^2 + 3xh + 7h + 14x + 8)}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} h^2 + 3 x^2 + 3xh + 7h + 14x + 8\]
\[ \Rightarrow f'(x) = 3 x^2 + 14x + 8\]
Thus,
\[f'(4) = 3 \times 4^2 + 14 \times 4 + 8 \]
\[ = 48 + 56 + 8\]
\[ = 112\]
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `x^y + y^x = a^b`then Find `dy/dx`
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate tan-1 (cot 2x) w.r.t.x.
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following : cos x
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
y = `e^(x3)`
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.