Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following:
sin2 y + cos xy = k
उत्तर
Since, sin2 y + cos xy = k
Differentiating both sides with respect to x,
`d/dx (sin^2 y) + d/dx (cos xy) = d/dx (k)`
`=> 2 sin y cos y dy/dx + (- sin xy) d/dx (xy) = 0`
`=> 2 sin y cos y dy/dx - sin xy [x dy/dx + y d/dx (x)] = 0`
`=> 2 sin y cos y dy/dx - x sin xy dy/dx - y sin xy = 0`
`=> sin 2y - x sin xy dy/dx - y sin xy = 0`
`=> dy/dx (sin 2y - x sin xy) = y sin xy`
`dy/dx = (y sin xy)/((sin 2y - x sin xy))`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Is |sin x| differentiable? What about cos |x|?
If f (x) = |x − 2| write whether f' (2) exists or not.
Differentiate tan-1 (cot 2x) w.r.t.x.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following:
`(1)/x`
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
y = `e^(x3)`
Find `(d^2y)/(dy^2)`, if y = e4x
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`