Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
उत्तर
sin2 x + cos2 y = 1
On differentiating with respect to both x and y,
`d/dx sin^2 x + d/dx cos^2 y = (d(1))/dx`
`=> 2 sin x d/dx sin x + 2 cos y d/dx cos y = 0`
`=> 2 sin x cos x + 2 cos y (- sin y) dy/dx = 0`
`=> 2 sin x cos x - 2 cos y sin y dy/dx = 0`
`=> sin 2x - sin 2 y dy/dx = 0`
`=> dy/dx = (sin 2x) /(sin 2 y)`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Is |sin x| differentiable? What about cos |x|?
Write the derivative of f (x) = |x|3 at x = 0.
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : `(1)/(3x - 5)`
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, yex + xey = 1
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`