हिंदी

Is |Sin X| Differentiable? What About Cos |X|? - Mathematics

Advertisements
Advertisements

प्रश्न

Is |sin x| differentiable? What about cos |x|?

संक्षेप में उत्तर

उत्तर

Let, f(x) = |sin x

`|sin x| = {(-sin x, ,(2m-1),pi<2mpi \text { where m }∈ Z),(sin x, ,2mpi< x<(2m +1),pi\text { where m} ∈  Z),(-sin x, ,(2m +1)pi<x<2(m+1),pi \text { where m } ∈ Z):}`

\[\left( \text { LHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^-} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^-} \frac{- \sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin\left( 2m\pi - h \right)}{2m\pi - h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{- h} = - 1\]

\[\left(\text {  RHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^+} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^+} \frac{\sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( 2m\pi + h \right)}{2m\pi + h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{h} = 1\]

\[\text { Here, LHD } \neq\text {  RHD } \text{So, function is not differentiable at x} = 2m\pi, where, m \in Z . . . . . \left( 1 \right)\]
\[\]

\[\left[ \text { LHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{f\left( x \right) - f\left[ \left( 2m + 1 \right)\pi \right]}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{\sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left[ \left( 2m + 1 \right)\pi - h \right]}{\left( 2m + 1 \right)\pi - h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{- h} = - 1\]

\[\left[ \text { RHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2m + 1 \right)\pi \right)}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{- \sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin \left[ \left( 2m + 1 \right)\pi + h \right]}{\left( 2m + 1 \right)\pi + h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{h} = 1\]

\[\text { Here, LHD } \neq \text { RHD . So, function is not differentiable at x }= \left( 2m + 1 \right)\pi, \text { where, m } \in Z . . . . . \left( 2 \right)\]
\[\text { From, } \left( 1 \right)\text {  and } \left( 2 \right), \text { we get }\]
\[f\left( x \right) = \left| \sin x \right| \text{is  not differentiable at x }= n\pi\]

We know that, 
\[\cos \left| x \right| = \cos x\text {  For all } x \in R\]
\[\text{Also we know that} \cos x\text {  is differentiable at all real points} . \]
\[\text{Therefore,} \cos \left| x \right| \text { is differentiable everywhere} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.2 | Q 12 | पृष्ठ १६

संबंधित प्रश्न

Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If f (x) = |x − 2| write whether f' (2) exists or not.


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


DIfferentiate x sin x w.r.t. tan x.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×