Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
उत्तर
x3 + x2y + xy2 + y3 = 81
Differentiating both sides w.r.t. x, we get
`3"x"^2 + "x"^2 "dy"/"dx" + "y" * "d"/"dx" ("x"^2) + "x"*"d"/"dx" ("y"^2) + "y"^2 * "d"/"dx" ("x") + 3"y"^2 * "dy"/"dx" = 0`
∴ `3"x"^2 + "x"^2 "dy"/"dx" + "y" * "2x" + "x" * "2y" "dy"/"dx" + "y"^2 + 3"y"^2 * "dy"/"dx" = 0`
∴ `(3"x"^2 + 2"xy" + "y"^2) + ("x"^2 + 2"xy" + 3"y"^2) "dy"/"dx" = 0`
∴ `("x"^2 + 2"xy" + 3"y"^2) "dy"/"dx" = - (3"x"^2 + 2"xy" + "y"^2)`
∴ `"dy"/"dx" = - (3"x"^2 + 2"xy" + "y"^2)/("x"^2 + 2"xy" + 3"y"^2)`
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Differentiate tan-1 (cot 2x) w.r.t.x.
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, yex + xey = 1
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`