हिंदी

Find dydx in the following: xy + y2 = tan x + y - Mathematics

Advertisements
Advertisements

प्रश्न

Find `dy/dx` in the following:

xy + y2 = tan x + y

योग

उत्तर

Since, xy + y2 = tan x + y

Differentiating both sides with respect to x,

`=> x d/dx (y) + y d/dx (x) + d/dx (y^2) = d/dx (tan x) + d/dx (y)`

`=> x dy/dx + y + 2y dy/dx = sec^2 x + dy/dx`

`=> dy/dx (x+ 2y - 1) = sec^2 x - y`

`dy/dx = (sec^2 x - y)/(x + 2y - 1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.3 [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.3 | Q 4 | पृष्ठ १६९

संबंधित प्रश्न

If y=eax ,show that  `xdy/dx=ylogy`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

Write the derivative of f (x) = |x|3 at x = 0.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : apx+q 


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×