English

Is |Sin X| Differentiable? What About Cos |X|? - Mathematics

Advertisements
Advertisements

Question

Is |sin x| differentiable? What about cos |x|?

Answer in Brief

Solution

Let, f(x) = |sin x

`|sin x| = {(-sin x, ,(2m-1),pi<2mpi \text { where m }∈ Z),(sin x, ,2mpi< x<(2m +1),pi\text { where m} ∈  Z),(-sin x, ,(2m +1)pi<x<2(m+1),pi \text { where m } ∈ Z):}`

\[\left( \text { LHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^-} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^-} \frac{- \sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin\left( 2m\pi - h \right)}{2m\pi - h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{- h} = - 1\]

\[\left(\text {  RHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^+} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^+} \frac{\sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( 2m\pi + h \right)}{2m\pi + h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{h} = 1\]

\[\text { Here, LHD } \neq\text {  RHD } \text{So, function is not differentiable at x} = 2m\pi, where, m \in Z . . . . . \left( 1 \right)\]
\[\]

\[\left[ \text { LHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{f\left( x \right) - f\left[ \left( 2m + 1 \right)\pi \right]}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{\sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left[ \left( 2m + 1 \right)\pi - h \right]}{\left( 2m + 1 \right)\pi - h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{- h} = - 1\]

\[\left[ \text { RHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2m + 1 \right)\pi \right)}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{- \sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin \left[ \left( 2m + 1 \right)\pi + h \right]}{\left( 2m + 1 \right)\pi + h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{h} = 1\]

\[\text { Here, LHD } \neq \text { RHD . So, function is not differentiable at x }= \left( 2m + 1 \right)\pi, \text { where, m } \in Z . . . . . \left( 2 \right)\]
\[\text { From, } \left( 1 \right)\text {  and } \left( 2 \right), \text { we get }\]
\[f\left( x \right) = \left| \sin x \right| \text{is  not differentiable at x }= n\pi\]

We know that, 
\[\cos \left| x \right| = \cos x\text {  For all } x \in R\]
\[\text{Also we know that} \cos x\text {  is differentiable at all real points} . \]
\[\text{Therefore,} \cos \left| x \right| \text { is differentiable everywhere} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.2 | Q 12 | Page 16

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Differentiate e4x + 5 w.r..t.e3x


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : cos x


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, yex + xey = 1 


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(d^2y)/(dy^2)`, if y = e4x


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×