Advertisements
Advertisements
Question
Is |sin x| differentiable? What about cos |x|?
Solution
Let, f(x) = |sin x|
`|sin x| = {(-sin x, ,(2m-1),pi<2mpi \text { where m }∈ Z),(sin x, ,2mpi< x<(2m +1),pi\text { where m} ∈ Z),(-sin x, ,(2m +1)pi<x<2(m+1),pi \text { where m } ∈ Z):}`
\[\left( \text { LHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^-} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^-} \frac{- \sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin\left( 2m\pi - h \right)}{2m\pi - h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{- h} = - 1\]
\[\left(\text { RHD at x } = 2m\pi \right) = \lim_{x \to 2m \pi^+} \frac{f\left( x \right) - f\left( 2m\pi \right)}{x - 2m\pi}\]
\[ = \lim_{x \to 2m \pi^+} \frac{\sin\left( x \right) - 0}{x - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( 2m\pi + h \right)}{2m\pi + h - 2m\pi}\]
\[ = \lim_{h \to 0} \frac{\sin\left( h \right)}{h} = 1\]
\[\text { Here, LHD } \neq\text { RHD } \text{So, function is not differentiable at x} = 2m\pi, where, m \in Z . . . . . \left( 1 \right)\]
\[\]
\[\left[ \text { LHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{f\left( x \right) - f\left[ \left( 2m + 1 \right)\pi \right]}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^-} \frac{\sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left[ \left( 2m + 1 \right)\pi - h \right]}{\left( 2m + 1 \right)\pi - h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{- h} = - 1\]
\[\left[ \text { RHD at x } = \left( 2m + 1 \right)\pi \right] = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2m + 1 \right)\pi \right)}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2m + 1 \right) \pi^+} \frac{- \sin \left( x \right) - 0}{x - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{- \sin \left[ \left( 2m + 1 \right)\pi + h \right]}{\left( 2m + 1 \right)\pi + h - \left( 2m + 1 \right)\pi}\]
\[ = \lim_{h \to 0} \frac{\sin \left( h \right)}{h} = 1\]
\[\text { Here, LHD } \neq \text { RHD . So, function is not differentiable at x }= \left( 2m + 1 \right)\pi, \text { where, m } \in Z . . . . . \left( 2 \right)\]
\[\text { From, } \left( 1 \right)\text { and } \left( 2 \right), \text { we get }\]
\[f\left( x \right) = \left| \sin x \right| \text{is not differentiable at x }= n\pi\]
We know that,
\[\cos \left| x \right| = \cos x\text { For all } x \in R\]
\[\text{Also we know that} \cos x\text { is differentiable at all real points} . \]
\[\text{Therefore,} \cos \left| x \right| \text { is differentiable everywhere} .\]
APPEARS IN
RELATED QUESTIONS
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : cos x
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, yex + xey = 1
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Find `(d^2y)/(dy^2)`, if y = e4x
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`