Advertisements
Advertisements
Question
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Solution
x3 + y3 + 4x3y = 0
Differentiating both sides w.r.t. x, we get,
`"d"/"dx" "x"^3 + "d"/"dx" "y"^3 + 4"d"/"dx" ("x"^3."y") = 0`
`3"x"^2 "d"/"dx" "x" + 3"y"^2 "dy"/"dx" + 4 ["x"^3 "dy"/"dx" + "y" "d"/"dx" ("x"^3)]` = 0
∴ `3"x"^2. (1) + 3"y"^2 "dy"/"dx" + 4 ["x"^3 "dy"/"dx" + "y"(3"x"^2)] = 0`
∴ `3"x"^2 + 3"y"^2 "dy"/"dx" + 4"x"^3 "dy"/"dx" + 12"x"^2"y" = 0`
∴ `(3"y"^2 + 4"x"^3) "dy"/"dx" = − (12"x"^2"y" + 3"x"^2)`
∴ `"dy"/"dx" = (- (12"x"^2"y" + 3"x"^2))/((3"y"^2 + 4"x"^3)) = - (3"x"^2(1 + 4"y"))/(3"y"^2 + 4"x"^3)`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx` in the following:
2x + 3y = sin y
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, xy = log (xy)
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`