English

Find d2ydx2 of the following : x = sinθ, y = sin3θ at θ = π2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`

Sum

Solution

x = sinθ, y = sin3θ
Differentiating x and y w.r.t. θ, we get
`"dx"/"dθ" = "d"/"dθ"(sinθ)` = cosθ              ...(1)
and
`"dy"/"dθ" = "d"/"dθ"(sinθ)^3`

= `3(sinθ)^2."d"/"dθ"(sinθ)`
= 3sin2θ.cosθ
∴ `"dy"/"dx" = (("dy"/"dθ"))/(("dx"/"dθ"))`

= `(3sin^2θcosθ)/"cosθ"`
= 3sin2θ
and
`(d^2y)/(dx^2) = 3"d"/"dx"(sinθ)^2`

= `3"d"/"dθ"(sinθ)^2 xx "dθ"/"dx"`

= `3 xx 2sinθ"d"/"dθ"(sinθ) xx (1)/(("dx"/"dθ")`

= `6sinθ.cosθ xx (1)/"cosθ"`                    ...[By (1)]
= 6sinθ
∴ `((d^2y)/(dx^2))_("at" θ  = pi/(2)`

= `6sin  pi/(2)`
= 6 x 1
= 6.
Alternative Method :
x = sinθ, y = sin3θ
∴ y = x3
∴ `"dy"/"dx" = "d"/"dx"(x^3)` = 3x2

∴ `(d^2y)/(dx^2) = 3"d"/"dx"(x^2)`
= 3 x 2x
= 6x
If θ = `pi/(2), "then"  x = sin  pi/(2)` = 1

∴ `((d^2y)/(dx^2))_("at" θ  = pi/(2)`

 = `((d^2y)/(dx^2))_("at" x  = 1)`
= 6(1)
= 6.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.5 [Page 60]

RELATED QUESTIONS

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : eax+b 


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×