Advertisements
Advertisements
Question
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Solution
`"e"^"x" + "e"^"y" = "e"^("x + y")` .....(i)
Differentiating both sides w.r.t.x, we get,
`"d"/"dx" "e"^"x" + "d"/"dx" "e"^"y" = "d"/"dx" "e"^("x + y")`
`"e"^"x" "d"/"dx" "x" + "e"^"y" "d"/"dx" "y" = "e"^("x + y") "d"/"dx" ("x + y") ...("d"/"dx" "e"^"x" = "e"^"x")`
`"e"^"x". (1) + "e"^"y" "dy"/"dx" = "e"^("x + y"). ["d"/"dx" "x" + "d"/"dx" "y"] ...("d"/"dx" "x" = 1)`
∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") [1 + "dy"/"dx"]`
∴ `"e"^"x" + "e"^"y" "dy"/"dx" = "e"^("x + y") + "e"^("x + y") "dy"/"dx"`
∴ `("e"^"y" − "e"^("x + y")) "dy"/"dx" = "e"^("x + y") − "e"^"x"`
∴ `["e"^"y" − ("e"^"x" + "e"^"y")] "dy"/"dx" = ("e"^"x" + "e"^"y") − "e"^"x" ...["From (i)"]`
∴ `("e"^"y" - "e"^"x" - "e"^"y") "dy"/"dx" = ("e"^"x" + "e"^"y" - "e"^"x")`
∴ `(- "e"^"x") "dy"/"dx" = ("e"^"y")`
∴ `"dy"/"dx" = - ("e"^"y")/("e"^"x")`
∴ `"dy"/"dx" = - "e"^("y - x")`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
ax + by2 = cos y
if `x^y + y^x = a^b`then Find `dy/dx`
Is |sin x| differentiable? What about cos |x|?
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`