English

Find dydx in the following: ax + by2 = cos y - Mathematics

Advertisements
Advertisements

Question

Find `dy/dx` in the following:

ax + by2 = cos y

Sum

Solution

Since ax + by2 = cos y

Differentiating both sides with respect to x,

`=>a d/dx (x) + b d/dx (y2) = d/dx(cos y)`

`=> a xx 1 + b * 2y dy/dx = - sin y dy/dx`

`=> a + 2by dy/dx + sin y dy/dx = 0`

`=> a + dy/dx (2by +sin y) = 0`

`=> dy/dx (2by + sin y) = - a`

`therefore dy/dx =  (-a)/(2by + sin y)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.3 [Page 169]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.3 | Q 3 | Page 169

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


Find  `dy/dx` in the following:

2x + 3y = sin x


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : sin (ax + b)


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×