Advertisements
Advertisements
Question
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Solution
x= a cos θ, y = b sin θ
Differentiating x and y w.r.t. θ, we get
`"dx"/"dθ" = a"d"/"dθ"(cosθ)` = a(– sinθ) = – sinθ ...(1)
and
`"dy"/"dθ" = (("dy"/"dθ"))/(("dx"/"dθ")`
= `(bcosθ)/(-asinθ)`
= `(-b/a)cotθ`
∴ `(d^2y)/(dx^2) = "d"/"dx"[(-b/a)cotθ]`
= `(-b/a)."d"/"dθ"(cotθ)."dθ"/"dx"`
= `(-b/a).(-"cosec"^2θ) xx (1)/(("dx"/"dθ")`
= `(-b/a)"cosec"^2θ xx (1)/(-asinθ)` ...[By (1)]
= `(-b/a^2)"cosec"^3θ`
∴ `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2`
= `a^2[bsinθ.(-b/a^2)"cosec"^3θ + {(-b/a)cotθ}^2] + b^2`
= `a^2[-b^2/a^2"cosec"^2θ + b^2/a^2cot^2θ] + b^2`
= `a^2(-b^2/a^2)("cosec"^2θ - cot^2θ) + b^2`
= – b2 + b2 ...[∵ cosec2θ – cot2θ = 1]
∴ `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
APPEARS IN
RELATED QUESTIONS
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
sin2 y + cos xy = k
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Discuss extreme values of the function f(x) = x.logx
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : `(1)/(3x - 5)`
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, yex + xey = 1
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`