Advertisements
Advertisements
Question
Discuss extreme values of the function f(x) = x.logx
Solution
f(x) = x.logx
Differentiating w.r.t. x,
`f'(x) = x . 1/x + logx.1`
f'(x) = 1 + logx
Differentiating again w.r.t. x,
`f''(x) = 1/x`
For maxima or minima,
f'(x) = 0
∴ 1 + logx = 0
∴ logx = -1
∴ x = `e^-1`
∴ `f''(1/e) = 1/(1/e)`
∴ `f''(1/e) = e`
∴ `f''(1/e) > 0`
∴ f(x) is minimum at x = `1/e`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Write the derivative of f (x) = |x|3 at x = 0.
Find `dy/dx if x^3 + y^2 + xy = 7`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) if y = cos^-1 (√x)`
Differentiate tan-1 (cot 2x) w.r.t.x.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, yex + xey = 1
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`