Advertisements
Advertisements
Question
Find the nth derivative of the following : apx+q
Solution
Let y = apx+q
Then `"dy"/"dx" = "d"/"dx"(a^(px + q))`
= `a^(px + q)loga."d"/"dx"(px + q)`
`(d^2y)/(dx^2) = "d"/"dx"[ploga.a^(px + q)]`
= `ploga."d"/"dx"(a^(px + q))`
= `ploga.a^(px + q).log a."d"/"dx"(px + q)`
= `ploga.a^(px + q).log a xx (p xx 1 + 0)`
= `p^2.(loga)^2.a^(px + q)`
`(d^3y)/(dx^3) = "d"/"dx"[p^2.(loga)^2.a^(px + q)]`
= `p^2.(loga)^2."d"/"dx"(a^(px + q))`
= `p^2.(log a)^2.a^(px + q).log a."d"/"dx"(px + q)`
= `p^2.(loga)^3.a^(px + q) xx (p xx 1 + 0)`
= `p^3.(loga)^3.a^(px + q)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = p^n.(loga)^n.a^(px + q)`.
APPEARS IN
RELATED QUESTIONS
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `x^y + y^x = a^b`then Find `dy/dx`
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
y = `e^(x3)`
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.